diff --git a/admin/survey/modules/mod_EVOLI/R/Evoli_quality_clime_dan.R b/admin/survey/modules/mod_EVOLI/R/Evoli_quality_clime_dan.R index a0b521401..473fe5dbf 100644 --- a/admin/survey/modules/mod_EVOLI/R/Evoli_quality_clime_dan.R +++ b/admin/survey/modules/mod_EVOLI/R/Evoli_quality_clime_dan.R @@ -60,7 +60,7 @@ ID <- params[1] #---------------------------- CUSTOm FUNCTIONS -----------------------------# -source("modules/mod_EVOLI/R/Functions_QC/my_functions_QC.R") +source("modules/mod_EVOLI/R/Functions_QC/my_functions_QC_dan.R") #---------------------------- CUSTOm FUNCTIONS -----------------------------# diff --git a/admin/survey/modules/mod_EVOLI/R/Functions_QC/my_functions_QC_dan.R b/admin/survey/modules/mod_EVOLI/R/Functions_QC/my_functions_QC_dan.R new file mode 100644 index 000000000..2d9508e0b --- /dev/null +++ b/admin/survey/modules/mod_EVOLI/R/Functions_QC/my_functions_QC_dan.R @@ -0,0 +1,79 @@ + +#------------------------------------ Load some usefull functions ------------------------------------# +# Ustvarimo svojo funkcijo, ki vedno števila z 0.5 zaokrožila navzgor +# (glej "Variables and syntax Quality Climate 22072019 - FDV (1)".xlsx) +round2 = function(x) { + x <- round(x, 1) + # Najprej rekodiramo rezultate kot želi + # stranka: glej file + # "Variables and syntax Quality Climate 22072019 - FDV (1).xlsx" + x <- ifelse(x >= 4.9, 5, + ifelse(x >=4.1 & x <= 4.8, 4, ifelse( + x >= 3.1 & x <= 4.0, 3, ifelse( + x >= 2.1 & x <= 3.0, 2, ifelse( + x >= 1.3 & x <= 2.0, 1, NA + ) + ) + ) + ) + ) + x +} + + + +#prepare data for plot +prep.dat <- function(df, variable) { + df <- round2(rowMeans(df[, variable], na.rm = TRUE) / 4 * 5) + df <- data.frame(prop.table(table(df)) * 100) + names(df)[1] <- "Frequency" + names(df)[2] <- "Prcentage" + # Check if there is no labels + # We want to show values from 1 - 5 + # Therefore is some is missing we will + # create it and assign it 0 + # if (nrow(df) < 5) { + # miss <- 1:5 + # # Check diff + # dif <- setdiff(miss, df[,1]) + # # Check how many data we are missing + # miss.dummy <- df[1:length(dif),] + # # Clone data + # miss.dummy$Frekvens <- dif + # # # Add zeero + # miss.dummy$Procent <- 0 + # # Finally Rbind + # df <- rbind(miss.dummy, df) + # # And order + # df <- df[order(df$Frekvens),] + # } + return(df) +} + + +# name po katerih bomo razvrstili stolpce v grafu +labScore <- function(df, labelord) { + df$label <- ifelse(df$Frequency == 1, + "Meget utilfredsstillende", + ifelse( + df$Frequency == 2, + "Utilfredsstillende", + ifelse( + df$Frequency == 3, + "Gennemsnitlig", + ifelse( + df$Frequency == 4, + "Meget tilfredsstillende", + ifelse(df$Frequency == 5, "S\u00E6rdeles tilfredsstillende", NA) + ) + ) + )) + + # Imena po katerih bomo razvrstili stolpce v grafih + df$name <- labelord + + return(df) + +} + +#---------------------------------- //Load some usefull functions// ----------------------------------# \ No newline at end of file