library(knitr) library(kableExtra) knitr::opts_chunk$set(echo = FALSE, results = "hide", message = FALSE, dev = "cairo_pdf", warning = FALSE) knitr::opts_chunk$set(fig.pos = 'H') options(knitr.table.format = "latex", knitr.kable.NA = "") Sys.setlocale("LC_ALL","English") library(here) library(foreign) library(dplyr) library(psych) library(ggplot2) library(lubridate) library(wesanderson) library(colortools) # adjacent works library(ggthemes) # theme_tufte works library(varhandle) # coercing factor to numeric variables library(naniar) # for replacing values with missings library("Gifi") #Implements categorical principal component analysis library(matrixStats) #High-performing functions operating on rows and columns of matrice library(cowplot) library(tibble) library(reshape2) #!new in tool for FMS # for tables library(knitr) library(kableExtra) library(formattable) #!new in tool for FMS source("Utility functions.R") ## More functions # Response Rate, Non-contact Rate, Refusal Rate, Coop-rate r1 <- function(net,gross,i) { (net / (gross - i))*100 } # Rate of Ineligibles r2 <- function(net,gross){ (net/gross)*100 } ESSred <- rgb(.91, .20, .32) ESSgreen <- rgb(.14, .62, .51) ESSblue <- rgb(0, .25, .48) ESSColors <- unique(c(adjacent(ESSred, plot = F), square(ESSred, plot = F))) ESSColors <- c(ESSColors, ESSgreen, ESSblue) # pizza(ESSColors) themeESS <- theme_tufte(base_size = 9, base_family = "Calibri") + theme(axis.title = element_text(size = 9, face = "plain"), axis.text = element_text(size = 9), axis.line.x = element_line(), plot.title = element_blank(), legend.title = element_blank(), legend.text = element_text(size = 9), strip.text = element_text(size = 9, face = "bold"), legend.position = "none", legend.direction = "horizontal", legend.box = "vertical", legend.spacing = unit(0, "line"), legend.key.size = unit(.75, "line")) linebreak <- "\\hspace{\\textwidth}" # Test data from R9 CF data with Inwer ID (intnum): CFR9 <- foreign::read.spss("Data/Test R9/ESS9CFe03.sav", use.value.labels = F, use.missings = F, to.data.frame = T) CFR9singlecountry <- CFR9[CFR9$cntry == "DE",] # Assumes the FMS data used is country file. Change country if necessary for test. All countries needs change of full code CF <- CFR9singlecountry write.table(CFR9singlecountry,"DEMO_DATA_R9/ESS9CFe03_DE.csv", sep = ",", row.names = F) #Example Dataset for single country CF <- read.csv2("DEMO_DATA_R9/ESS9CFe03_DE.csv", sep = ",", dec=".", stringsAsFactors=F)